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Prevalence of Graph-Structured Data

Image source: https://www.tigergraph.com/solutions/recommendation-engine/;
https://yashuseth.wordpress.com/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
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Graph Neural Networks (GNNs)

Image source: https://medium.com/@shekhawatsamvardhan/types-of-neural-networks-graph-neural-networks-a82ae13638ac3

• Leverage neighbor information among nodes to learn embeddings 
to perform downstream tasks

https://medium.com/@shekhawatsamvardhan/types-of-neural-networks-graph-neural-networks-a82ae13638ac


Transductive Setting
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Train/Test Split

Training

During training, the entire graph including 
node attributes and edges can been observed



Transductive Setting
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Graph Observed During Training 

During inference, users feed the identifiers of 
unlabeled seen nodes into GNN to obtain 

prediction results
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Inductive Setting
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Train/Test Split

Training

During training, only the training graph can 
be observed
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Inductive Setting

7

During inference, users construct subgraphs 
to obtain prediction results of unseen nodes
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Difference Between Two Settings
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Inductive GNNs are more generalizable and flexible for dynamic real-
world applications, e.g., social network and recommendation system

Transductive
GNN

Inductive
GNN

“Memorize” the training graph

Learn a generalizable embedding function



Link Stealing Attacks on Transductive GNNs

9

• Previous work[1] demonstrates that the transductive GNNs are 
vunlerable to link stealing attacks

[1] “Stealing Links from Graph Neural Networks,” Xinlei He, Jinyuan Jia, Michael Backes, Neil Zhenqiang Gong, Yang Zhang; USENIX Security 2021

Given two nodes used to train a black-box GNN, can we predict 
whether they are linked?

?
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Challenges From The Differences
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Inductive GNNs might not learn specific information of training graph 
as transductive GNNs
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“Memorize” the training graph

Learn a generalizable embedding function



Challenges From The Differences
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The adversary relies on limited and incomplete neighbor information, 
as the information of the link they intend to infer is missing



Are inductive GNNs vulnerable?
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Transductive
GNN

Inductive
GNN

Query with the identifiers of unlabeled nodes 
and obtain fixed node embeddings learned 
during training

Query with own constructed subgraphs and obtain 
node embeddings based on the subgraphs

Given the above two challenges, are inductive GNNs vulnerable to link 
stealing attacks? 



Link Stealing Attacks on Inductive GNNs
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Evaluation Results
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• The proposed attacks with no (A0; 0-hop only) or limited (A1; 1-hop 
query) neighbor information can achieve good performance

•More information achieves better performance



Conclusion
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•We propose in total 10 link stealing attacks against inductive GNNs
•No neighbor information (0-hop query) still enables well-

performing link stealing attacks
•More information achieves better attack performance
•High robustness of the proposed attacks; better performance than 

traditional link prediction (baseline), showing inductive GNNs 
indeed leak privacy information
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